Bayesian Methods to Impute Missing Covariates for Causal Inference and Model Selection

نویسندگان

  • Robin Mitra
  • David B. Dunson
چکیده

BAYESIAN METHODS TO IMPUTE MISSING COVARIATES FOR CAUSAL INFERENCE AND MODEL SELECTION by Robin Mitra Department of Statistical Science Duke University

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

متن کامل

CF-GeNe: Fuzzy Framework for Robust Gene Regulatory Network Inference

Most Gene Regulatory Network (GRN) studies ignore the impact of the noisy nature of gene expression data despite its significant influence upon inferred results. This paper presents an innovative Collateral-Fuzzy Gene Regulatory Network Reconstruction (CF-GeNe) framework for Gene Regulatory Network (GRN) inference. The approach uses the Collateral Missing Value Estimation (CMVE) algorithm as it...

متن کامل

Multiple Imputation for Causal Inference

The potential outcome framework for causal inference is fundamentally a missing data problem with a special, the so-called file-matching, pattern of missing data. Given the large body of literature on various methods for handling missing data and associated software, it will be useful to use such methods to facilitate causal inference for routine applications. This article uses the sequential r...

متن کامل

Penalized regression procedures for variable selection in the potential outcomes framework.

A recent topic of much interest in causal inference is model selection. In this article, we describe a framework in which to consider penalized regression approaches to variable selection for causal effects. The framework leads to a simple 'impute, then select' class of procedures that is agnostic to the type of imputation algorithm as well as penalized regression used. It also clarifies how mo...

متن کامل

Strategy for modelling non-random missing data mechanisms in observational studies using Bayesian methods

Observational studies inevitably suffer from non-responses and missing values. Bayesian full probability modelling provides a flexible approach for analysing such data, allowing a plausible model to be built which can then be adapted to carry out a range of sensitivity analyses. In this context, we propose a strategy for using Bayesian methods for a ‘statistically principled’ investigation of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008